资源类型

期刊论文 373

会议视频 3

年份

2024 1

2023 19

2022 50

2021 35

2020 29

2019 35

2018 10

2017 9

2016 15

2015 5

2014 15

2013 26

2012 7

2011 17

2010 11

2009 23

2008 17

2007 15

2006 4

2005 5

展开 ︾

关键词

混凝土 17

三峡工程 7

三峡升船机 4

混凝土坝 3

混凝土浇筑 3

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

承载力 2

收缩 2

施工技术 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

FRP 聚合物 1

FRP筋 1

展开 ︾

检索范围:

排序: 展示方式:

Chloride diffusion in concrete with carbonated recycled coarse aggregates under biaxial compression

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 637-648 doi: 10.1007/s11709-023-0902-0

摘要: Chloride attack on concrete structures is affected by the complex stress state inside concrete, and the effect of recycled aggregates renders this process more complex. Enhancing the chloride resistance of recycled concrete in a complex environment via carbonization facilitates the popularization and application of recycled concrete and alleviates the greenhouse effect. In this study, the chloride ion diffusion and deformation properties of recycled concrete after carbonization are investigated using a chloride salt load-coupling device. The results obtained demonstrate that the chloride ion diffusivity of recycled concrete first decreases and then increases as the compressive load increases, which is consistent with the behavior of concrete, in that it first undergoes compressive deformation, followed by crack propagation. Carbonation enhances the performance of the recycled aggregates and reduces their porosity, thereby reducing the chloride diffusion coefficient of the recycled concrete under different compressive load combinations. The variation in the chloride ion diffusivity of the carbonized recycled aggregate concrete with the load is consistent with a theoretical formula.

关键词: recycled concrete     carbonated recycled coarse aggregate     biaxial compression     chloride diffusion     stress level    

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 817-842 doi: 10.1007/s11709-022-0844-y

摘要: To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

关键词: steel reinforced recycled concrete     CFRP strips     short columns     axial compression behavior     recycled aggregate concrete    

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregate

Jingwei YING; Feiming SU; Shuangren CHEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 302-315 doi: 10.1007/s11709-022-0803-7

摘要: The purpose of this study is to reveal the service performance of recycled aggregate concrete (RAC) components for different values of water−cement ratio and replacement rate of recycled coarse aggregate (RCA). Generally, the concrete strength decreases with the increase of the replacement rate of RCA, in order to meet the strength requirements when changing the replacement rate of RCA, it is necessary to change the water−cement ratio at the same time. Therefore, the axial compressive strengths of prism with 25 mix proportions, the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water−cement ratio and RCA replacement rate. The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation (DIC) method, and a self-made gravity loading experimental device was used for long-term deformation investigation. Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete (NAC), but the brittleness was more pronounced. The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water−cement ratio. The water−cement ratio has an evident influence on the axial compressive strength and early creep of concrete, while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.

关键词: recycled concrete     beam     the replacement rate of recycled coarse aggregate     water–cement ratio     digital image correlation    

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 725-740 doi: 10.1007/s11709-018-0510-6

摘要: A study on the punching shear behavior of 8 slabs with recycled aggregate concrete (RAC) was carried out. The two main factors considered were the recycled coarse aggregate (RCA) replacement percentage and the steel fibre volumetric ratio. The failure pattern, load-displacement curves, energy consumption and the punching shear capacity of the slabs were intensively investigated. It was concluded that the punching shear capacity, ductility and energy consumption decreased with the increase of RCA replacement percentage. Research findings indicated that the incorporation of steel fibres could not only improve the energy dissipation capacity and the punching shear capacity of the slab, but also effectively improve the integrity of the slab tension surface and thereby changing the trend from typical punching failure pattern to bending-punching failure pattern. On the basis of the test, the punching shear capacity formula of RAC slabs with and without steel fibres was proposed and discussed.

关键词: recycled aggregate concrete     steel fibres     slab     punching shear     recycled coarse aggregates replacement percentage    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 302-308 doi: 10.1007/s11709-008-0050-6

摘要: A study is conducted on the seismic behavior of one natural concrete frame and two recycled concrete frames with 100% recycled coarse aggregate whose scales are 1:2 entirely, and a comparative study is conducted under low-reversed cyclic lateral loading and different vertical loading. This work aims to estimate the failure mechanism, hysteresis loops, displacement ductility, deterioration of strength and stiffness and energy dissipation of recycled concrete frames under low-reversed cyclic loading as well as the influence of different vertical loading. Analysis on the basis of the experiment proves that it is entirely feasible to apply recycled concrete to practical engineering for the sake of its good seismic behaviors. Theoretical base is provided for further study and practical application of recycled concrete structure.

关键词: different     aggregate     stiffness     practical application     % recycled    

Research on recycled concrete and its utilization in building structures in China

Jianzhuang XIAO, Tao DING

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 215-226 doi: 10.1007/s11709-013-0212-z

摘要: Large quantities of construction and demolition (C&D) building waste are being generated as a result of rapid urbanization and natural disasters in China. An increasing awareness of environmental protection is escalating C&D waste disposal concerns. This paper presents a brief introduction to current shaking table test research in China on structures built with recycled aggregate concrete (RAC). Test structures include a cast-in situ frame model, a precast frame model and a block masonry building. The test results prove that it is feasible to use RAC as a structural material in seismic areas, with recommended modifications and proper design, especially in low-rise structures. This paper also presents several successful applications of RAC in civil and structural engineering projects in China, which will serve to promote RAC as a global ecological structural material.

关键词: recycled aggregate concrete (RAC)     structural material     shaking table tests     building structure    

Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets

Yasmin MURAD, Wassel AL BODOUR, Ahmed ASHTEYAT

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 554-568 doi: 10.1007/s11709-020-0613-8

摘要: An experimental and numerical program is carried out in this research to investigate the influence of CFRP sheets on the cyclic behavior of unconfined connections made with recycled concrete. Cement is partially replaced by silica fume, iron filling and pulverised fuel ash using two different percentages: 15% and 20%. Each specimen is partially loaded at the first stage and then specimens are repaired using CFRP sheets. The repaired specimens are then laterally loaded until failure. In addition, a finite element model is built in ABAQUS and verified using the experimental results. The experimental results have shown that the repaired specimens have regained almost double the capacity of the un-repaired specimens and hence the adopted repair configuration is recommended for retrofitting seismically vulnerable RC connections. Increasing cement replacement percentage by silica fume, fuel ash or iron filling from 15% to 20% has reduced joint carrying capacity and weakened the joint. It is recommended using 15% pulverised fuel ash or silica fume as cement partial replacement to enhance the strength and ultimate drift of beam-column joints under cyclic loading. Iron filling concrete is also recommended but the enhancement is relatively less than that found with pulverised fuel ash concrete and silica fume concrete.

关键词: retrofitting     CFRP sheets     recycled concrete     pulverised fuel ash     silica fume     cyclic     beam-column connections    

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1358-1371 doi: 10.1007/s11709-021-0769-x

摘要: An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate (RBA) was carried out. As control cases, virgin brick aggregate (BA) and stone aggregate (SA) were also investigated. Both cylindrical and cracked prism specimens were studied for 16 different cases. The prism specimens were made with a segmented steel bar providing electrical connection from outside of the specimens to measure macro-cell corrosion current continuously under seawater splash exposure for a period of 30 d using a data logger. Cylindrical specimens were submerged in 3% NaCl solution at a temperature of 40°C to investigate chloride ingress in concrete made with RBA, BA, and SA after 120 and 180 d. Half-cell potential, corrosion area, and depths of corrosion were also investigated. The chloride ingress as well as corrosion of steel bars in concrete made with the different types of aggregate is ordered as RBA > BA > SA.

关键词: brick aggregate     chloride ingress     macro-cell corrosion     recycled brick aggregate    

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1561-1572 doi: 10.1007/s11709-020-0640-5

摘要: The physio-chemical changes in concrete mixes due to different coarse aggregate (natural coarse aggregate and recycled coarse aggregate (RCA)) and mix design methods (conventional method and Particle Packing Method (PPM)) are studied using thermogravimetric analysis of the hydrated cement paste. A method is proposed to estimate the degree of hydration ( ) from chemically bound water ( ). The PPM mix designed concrete mixes exhibit lower . Recycled aggregate concrete (RAC) mixes exhibit higher and after 7 d of curing, contrary to that after 28 and 90 d. The chemically bound water at infinite time ( ) of RAC mixes are lower than the respective conventional concrete mixes. The lower , Ca(OH) bound water, free Ca(OH) content and FT-IR analysis substantiate the use of pozzolanic cement in the parent concrete of RCA. The compressive strength of concrete and cannot be correlated for concrete mixes with different aggregate type and mix design method as the present study confirms that the degree of hydration is not the only parameter which governs the macro-mechanical properties of concrete. In this regard, further study on the influence of interfacial transition zone, voids content and aggregate quality on macro-mechanical properties of concrete is needed.

关键词: recycled aggregate concrete     Particle Packing Method     thermogravimetric analysis     chemically bound water     degree of hydration     Fourier transform infrared spectroscopy    

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 628-639 doi: 10.1007/s11709-018-0501-7

摘要: The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular (RACFST) columns under eccentric loadings with the incorporation of expansive agents. A total of 16 RACFST columns were tested in this study. The main parameters varied in this study are recycled coarse aggregate replacement percentages (0%, 30%, 50%, 70%, and 100%), expansive agent dosages (0%, 8%, and 15%) and an eccentric distance of compressive load from the center of the column (0 and 40 mm). Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement; the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability. The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concrete-filled steel tubular columns.

关键词: concrete filled steel tubes     recycled aggregate concrete     columns     expansive agent     eccentric load    

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1504-1506 doi: 10.1007/s11709-021-0782-0

摘要: A methodology to compute the CO2 uptake of recycled aggregate concrete is proposed in the commented paper. Besides some typos in several formulas, it is found that the approach to estimate the specific surface area of the recycled aggregates is not correct. This issue has some impact in the conclusions of the commented paper. Therefore, aiming to improve the understanding, accuracy and findings of the commented paper, an alternative approach to estimate the specific surface area of the recycled aggregates, as well as an erratum of the formulas and revised conclusions are suggested.

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregateconcrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

A new systematic firefly algorithm for forecasting the durability of reinforced recycled aggregate concrete

Wafaa Mohamed SHABAN; Khalid ELBAZ; Mohamed AMIN; Ayat gamal ASHOUR

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 329-346 doi: 10.1007/s11709-022-0801-9

摘要: This study presents a new systematic algorithm to optimize the durability of reinforced recycled aggregate concrete. The proposed algorithm integrates machine learning with a new version of the firefly algorithm called chaotic based firefly algorithm (CFA) to evolve a rational and efficient predictive model. The CFA optimizer is augmented with chaotic maps and Lévy flight to improve the firefly performance in forecasting the chloride penetrability of strengthened recycled aggregate concrete (RAC). A comprehensive and credible database of distinctive chloride migration coefficient results is used to establish the developed algorithm. A dataset composite of nine effective parameters, including concrete components and fundamental characteristics of recycled aggregate (RA), is used as input to predict the migration coefficient of strengthened RAC as output. k-fold cross validation algorithm is utilized to validate the hybrid algorithm. Three numerical benchmark analyses are applied to prove the superiority and applicability of the CFA algorithm in predicting chloride penetrability. Results show that the developed CFA approach significantly outperforms the firefly algorithm on almost tested functions and demonstrates powerful prediction. In addition, the proposed strategy can be an active tool to recognize the contradictions in the experimental results and can be especially beneficial for assessing the chloride resistance of RAC.

关键词: chloride penetrability     recycled aggregate concrete     machine learning     concrete components     durability    

标题 作者 时间 类型 操作

Chloride diffusion in concrete with carbonated recycled coarse aggregates under biaxial compression

期刊论文

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

期刊论文

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregate

Jingwei YING; Feiming SU; Shuangren CHEN

期刊论文

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

期刊论文

Research on recycled concrete and its utilization in building structures in China

Jianzhuang XIAO, Tao DING

期刊论文

Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets

Yasmin MURAD, Wassel AL BODOUR, Ahmed ASHTEYAT

期刊论文

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

期刊论文

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

期刊论文

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

期刊论文

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregateconcrete

期刊论文

A new systematic firefly algorithm for forecasting the durability of reinforced recycled aggregate concrete

Wafaa Mohamed SHABAN; Khalid ELBAZ; Mohamed AMIN; Ayat gamal ASHOUR

期刊论文